On the space of ergodic invariant measures of unipotent flows

نویسندگان

  • Shahar Mozes
  • Nimish Shah
چکیده

Let G be a Lie group and Γ be a discrete subgroup. We show that if {μn} is a convergent sequence of probability measures on G/Γ which are invariant and ergodic under actions of unipotent one-parameter subgroups, then the limit μ of such a sequence is supported on a closed orbit of the subgroup preserving it, and is invariant and ergodic for the action of a unipotent one-parameter subgroup of G.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Unipotent Flows in H(1, 1)

We study the action of the horocycle flow on the moduli space of abelian differentials in genus two. In particular, we exhibit a classification of a specific class of probability measures that are invariant and ergodic under the horocycle flow on the stratum H(1, 1).

متن کامل

Unipotent flows on the space of branched covers of Veech surfaces

There is a natural action of SL(2,R) on the moduli space of translation surfaces, and this yields an action of the unipotent subgroup U = {( 1 ∗ 0 1 )} . We classify the U -invariant ergodic measures on certain special submanifolds of the moduli space. (Each submanifold is the SL(2,R)-orbit of the set of branched covers of a fixed Veech surface.) For the U -action on these submanifolds, this is...

متن کامل

Invariant Radon Measures for Unipotent Flows and Products of Kleinian Groups

Let G = PSL2(F) where F = R,C, and consider the space Z = (Γ1 × Γ2)\(G × G) where Γ1 < G is a co-compact lattice and Γ2 < G is a finitely generated discrete Zariski dense subgroup. The work of Benoist-Quint [2] gives a classification of all ergodic invariant Radon measures on Z for the diagonal G-action. In this paper, for a horospherical subgroup N of G, we classify all ergodic, conservative, ...

متن کامل

Invariant Measures and Orbit Closures on Homogeneous Spaces for Actions of Subgroups Generated by Unipotent Elements

The theorems of M. Ratner, describing the finite ergodic invariant measures and the orbit closures for unipotent flows on homogeneous spaces of Lie groups, are extended for actions of subgroups generated by unipotent elements. More precisely: Let G be a Lie group (not necessarily connected) and Γ a closed subgroup of G. Let W be a subgroup of G such that AdG(W ) is contained in the Zariski clos...

متن کامل

0 v 1 [ m at h . D S ] 6 A ug 2 00 4 Unipotent flows on the space of branched covers of Veech surfaces

There is a natural action of SL(2, R) on the moduli space of translation surfaces, and this yields an action of the unipotent subgroup U = 1 * 0 1. We classify the U-invariant ergodic measures on certain special submanifolds of the moduli space. (Each submanifold is the SL(2, R)-orbit of the set of branched covers of a fixed Veech surface.) For the U-action on these submanifolds, this is an ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995